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Film-splitting flows in forward roll coating 
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(Received 6 May 1985 and in revised form 1 April 1986) 

A model based on the lubrication approximation is put forward for the general case 
of asymmetric forward roll coating of Newtonian liquids. Two more-rigorous theories 
are developed, one based on asymptotic expansions for small ratios of gap-to-roll 
diameter (Ho/R),  the second on Galerkin/finite-element solutions of the full Navier- 
Stokes equations over the relevant flow domain. The lubrication model is useful only 
as an approximation at high capillary numbers (Cu = pT/g) .  The asymptotic 
analysis is accurate when Ho/R < 0.001 and Cu > 0.1. The ratio of the film 
thicknesses on the two rolls is predicted to equal the speed ratio to the 0.65 power, 
which is confirmed experimentally. The Galerkin/finite-element solutions give full 
details of the steady two-dimensional free-surface flows including complex recircula- 
tion patterns in the film-splitting region, and show how the film-splitting stagnation 
line becomes a static contact line in the limit as one roll surface becomes stationary. 

1. Introduction 
Forward roll coating is a process whereby liquid flows into a narrow gap between 

two rotating cylinders (or a rotating cylinder and a translating flat sheet), the 
non-deformable surfaces of which move in the same direction. Some of the liquid 
passes through the gap and a short distance downstream splits into two films, each 
coating one of the rolls. The flow may be symmetric, as shown in figure 1, or it may 
be made asymmetric by unequal roll radii or speeds. The rolls need not be 
half-submerged, as shown in figure 1 ; indeed, i t  is common for just one of the rolls 
to bring a liquid film into the gap and the other to arrive dry. There are other 
situations such as in multi-roll printing presses where film-splitting is used to meter 
and distribute liquid, and both rolls may bring liquid films to the gap. 

This paper analyses these flows from three perspectives : (i) classical lubrication 
theory (see Cameron 1966; Middleman 1977), (ii) asymptotic expansions such as 
those derived by Ruschak (1982), and (iii) solution of the Navier-Stokes system in 
the relevant flow domain by the Galerkin/finite-element method. The lubrication 
model is developed in full generality, so that configurations with equd roll radii, 
equal surface speeds, or one surface stationary arise naturally as special cases. In a 
similar fashion Ruschak’s asymptotic equations are generalized to the asymmetric 
C ~ E E  and solved. Finally the viscous free-surface flows are calculated in detail by 
solving the Navier-Stokes system. The results not only provide a test of the validity 
of the simple model and the asymptotic approximation but also set the stage for 
accurate three-dimensional linear stability analysis presented elsewhere (Coyle 1984 ; 
Coyle, Macosko & Scriven 1986a). 

5 Present address : General Electric Company, Corporate Research and Development, 
Schenectady, NY 1230I, USA. 
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FIQURE 1 .  Symmetric film splitting in a half-submerged forward roll coating flow. 

FIQURE 2. Definition sketch of asymmetric film splitting in forward roll coating with 
half-submerged rolls. 

2. Lubrication theory for a Newtonian liquid 

dimensionless coordinates 
In setting up a lubrication model of these flows it is convenient to define the 

(2.1) 
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where H ,  is the half-gap width and R is the average roll radius (see figure 2) 



z

A transformed X-coordinate 8 and a transformed Y-coordinate r] are defined by 

so that -in < 8 < in and 0 < 7 < 2, where the roll surface profiles though circular 
are approximated by parabolas 

x2 X2 
H1(X) = --, H2(X) = 2Ho+-. 

2Rl 2R2 

In  terms of these variables the dimensionless separation between roll surfaces is 

The speed ratio and average roll speed are defined as 

v = - ,  v , -  V = i ( v , + v , ) ,  
v, 

and the dimensionless variables defined by 

are the pressure, x-velocity, and flow rate through the gap. In  the limit of the 
lubrication approximation the balance of X-momentum reduces to 

Uqq = i(F + 2)2 PE. (2.7) 

No-slip boundary conditions at the roll surfaces are 

2 v  
u(7 = 2) = - 

1 +  V’ 
2 

u(7 = 0) = - 
1 + V ’  

so that integrating (2.7) twice with respect to  7 gives 

Substituting this result in (2.6) and rearranging gives 

(2.10) 

In  terms of 8, the transformed x-coordinate, the velocity field and pressure gradient 
field are 

v- 1 2 
u = Q(1-A ~0~~8)(7~-27)+-7+-  

v+1 V + 1 ’  
(2.1 1 )  

PO = = 31/2(c0s2 8-A C O S ~  8). (2.12) 
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Integrating the latter for half-submerged rolls, i.e. with p( -in) = 0, gives the 
pressure profile 

p/31/2 = -$I sin8 c0s38+( l -$ l ) ($?+~ sin28++n). (2.13) 

The dimensionless flow rate A is determined by specifying another boundary 
condition on pressure. 

The simplest case is that of completely submerged rolls (cf. Gatcombe 1945; Banks 
6 Mill 1954), for which p(!jn) = 0; this leads to the result 

A = t .  (2.14) 

Another possible boundary condition is that of Reynolds’ (1886)’ a postulate that 
at  some point in the flow (here denoted with the subscript m) both the pressure and 
its gradient vanish. Setting to zero the right-hand sides of (2.12) and (2.13) leads to 

1 A = 1.226, 

8, = 0.4436 (6 ,  = 0.6719). 
(2.15) 

As discussed by Taylor (1963) and Dowson & Taylor (1979), this boundary condition 
is most appropriate when the film is split by cavitation within the liquid. Taylor’s 
photographs show a transition from smooth flow separation at  the downstream 
meniscus to irregular, cavitation-induced film splitting, i.e. formation of bubbles of 
air and/or water vapour within the liquid. Similar evidence of cavitation is presented 
in the works of Cole & Hughes (1956), of Floberg (1961a, b, 1964), and of Myers and 
coworkers (see Miller & Myers 1958; Myers, Miller & Zettlemoyer 1959; Myers & 
Hoffman 1961 ; Hoffman & Myers 1962). The analyses presented in the remainder of 
this paper deal only with the smooth flow-separation regime of film splitting. 

A problem with the Reynolds model is that it gives no clue as to how much of the 
liquid is carried by each roll in the asymmetric case. Savage (1982) resorted to 
intuitive arguments to arrive a t  a relationship between the ratio of film thicknesses 
and the speed ratio, which can be written as 

Tz = V ( V + 3 )  - 
3 V + 1  ’ 

(2.16) 

When the film splits by flow separation rather than cavitation, the lubrication 
approximation requires some sort of model for the flow separation region. Hopkins 
(1957) postulated that the film splits a t  the first stagnation point (actually a line 
perpendicular to the (X, Y)-plane) downstream of the gap centre at a point midway 
between roll surfaces. This idea can be extended to the asymmetric case as follows. 
The coordinates of the split point are (Om, vm), and at  this point 

(2.17) 

(2.19) 

where rm is the radius of curvature of the meniscus in units of half-gap width, 
Cu, = (,uT/g)(R/H,): is a modified capillary number, p is given by (2.13) and u by 
(2.11). It should be noted that (2.19) is the boundary condition missed by Benkreira, 
Edwards & Wilkinson (1981a) and thus their analysis is incorrect. The three 
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equations (2.17)-(2.19) are independent and contain four unknowns (A ,  Om, ym, rm): 
an additional relation is needed. If the meniscus is modelled as an arc of circle 
between parallel plates (cf. Greener & Middleman 1979), geometry demands that 

(2.20) 

where t, and t, are the final thicknesses, in units of half-gap width, of the films carried 
by rolls 1 and 2 respectively (i.e. t ,  = T , / H o ,  t, = T, /Ho) .  These are two added 
unknowns, but they are governed by two mass balances. An overall mass balance 
gives 

(2.21) A( v+ 1 )  = t l+t ,  v, 
and a balance around the film on roll 1 gives 

t, = (' + JVrn u(Bm, 7) dy. 2 Cos2em 
(2.22) 

Now there are six unknowns and six equations: (2.17)-(2.22). The set can be solved 
numerically as was done by Savage (1982) with an analogous set of equations. This 
is not the best manner in which to proceed, because some simple analytical results 
can be derived as follows. The momentum balance (2.7) requires a velocity profile 
that is quadratic in 7 : 

u = uyZ+by+c. (2.23) 

The definition of 7 (2.2) is such that 0 G y G 2, and so at the film-split location 
(em, ym) the no-slip (2.8) and stagnation-point conditions (2.18, 2.19) give four 
equations in the four constants a, b,  c, and ym. Solving these yields 

(2.24) 
2 

ym"=1+* 

From this a mass balance gives the film-thickness ratio 

t udrl 
2 =  vm 

t1 VJ:mudq' 
(2.25) 

which simplifies to - = vi. (2.26) 

Thus the film-thickness ratio is simply the square root of the speed ratio. A similar 
relationship has been derived for a power-law liquid (Coyle, Macosko & Scriven 
1986b). Equating the y2 (or y) terms in (2.23) and (2.11) makes it possible to solve 
for 8 ,  in terms of A :  

tl 

2(1- v:+ V )  
3( V +  1 )  * 

A cos2 em = (2.27) 

Combining this result with (2.21) makes i t  possible to solve for t, in terms of A :  

A( v+ 1 )  
t l =  l + E .  (2.28) 

This result and (2.26) together with (2.20) give the radius of curvature of the 
meniscus in terms of A : 

rm = $I( V+ 1 )  (2.29) 

P L S ~  171 7 
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FIGURE 3. Flow rate through the gap ( A )  and film-split location (tan8,) predicted by the 
lubrication-flow model with the hypothesis that the film splits at the first stagnation line. 

Thus the pressure boundary condition (2.17) becomes 

= 0. 
1 

-;A sin 8, cos3 8, + (1 -:A) (;Om +f sin 28, + x )  ' +3.\/2 Ca, T, 
(2.30) 

This along with (2.29) and (2.27) gives h as a function of the parameters Ca, and V .  
When the speed ratio is unity this reduces to the model presented by Greener & 
Middleman (1979) for that special case. Furthermore, at infinite capillary number the 
case of unit speed ratio further reduces to the model of Hopkins (1957), according 
to which 

h = 1.3015, tan8, = 1.7044. (2.31) 

It should be noted that the sheet-and-roll configurations of Taylor (1974) and 
Greener & Middleman (1975) are also special cases of this general treatment. 

A t  finite capillary number and at speed ratios other than unity, (2.30) is equivalent 
to the separation model of Savage, who, however, did not report the simple 
derivation of the film split shown here. Hintermaier & White (1965) attempted this 
problem but did not find the complete solution; their result for the split ratio is valid 
only for speed ratios close to unity. As mentioned earlier, Benkreira et al. (1981 a, b )  
missed a boundary condition and in its place used some questionable experimental 
data to complete the model. In  a later paper Benkreira et al. (1982) proposed another 
film-splitting model that rested on an even weaker foundation. How faithful the 
model presented here is to reality is examined in $4. 

Figure 3 shows that the dimensionless flow rate h is insensitive to capillary number 
when Ca, > 1, and falls only slightly as speed ratio rises (1.30 >, h 2 1.26). Because 
Ca, is the capillary number, which is often of the order of unity, multiplied by 
(R/H,)t, which is commonly of the order of 1000, the flow rate is nearly constant over 
most practical operating conditions. The film-split location, also shown in figure 3, 
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FIQIJRE 4. Pressure profiles in forward roll coating redicted from lubrication theory 
(tan8 = X/(ERH,,) P ). 

is also insensitive to capillary number but recedes somewhat as the speed ratio gets 
further from unity. Figure 4 shows the characteristic pressure profile that is 
generated in forward roll coating ; it also reveals how maximum pressure climbs and 
the minimum pressure falls as the speed ratio is increased. 

The model presented here should be accurate at high capillary number, but the 
accuracy is suspect at low capillary number (strong effect of surface tension) because 
the free-surface model used is crude. This issue is resolved by the analysis in $54 
and 5.  

3. Finite-element analysis of steady-state viscous free-surface flows 
In all coating flows, not just those of roll coating, there are regions of the flow field 

that are two-dimensional and bounded by free surfaces, i.e. liquid/air interfaces 
whose locations are unknown a priori. Whereas other regions of the flow may be 
adequately described by plug-flow or lubrication approximations, these are seldom 
adequate for the two-dimensional free-surface flows that are crucial to the accurate 
modelling of coating operations. It is here that the power of the finite-element 
method is brought to bear. 

3.1. Governing equations and boundary conditions 
For steady, isothermal flow of an incompressible liquid, conservation of momentum 
and mass is expressed by the Navier-Stokes system, which in dimensionless form is 

V-T-Reu.Vu+St  f = 0,  (3.1) 

v - u  = 0. (3.2) 

With a characteristic length L and velocity V, the pressure and stress are made 
dimensionless by p V / L ,  where p is the liquid viscosity. The total stress T is the sum 
of the pressure and viscous stress, and for a Newtonian liquid is given by 

7-2 
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T = - p l + [ ( V u ) + V ~ ) ~ ] .  The Reynolds number Re 3 pVL/y  measures the ratio of 
inertial to viscous forces and the Stokes number St = pgLz/pV measures the ratio 
of gravity forces to viscous forces. f is a unit vector in the direction in which gravity 
acts. 

Boundary conditions can specify either the velocity or stress. At  solid boundaries 
the no-slip hypothesis is accurate (except very near contact lines), so that Dirichlet 
or essential boundary conditions are imposed there : 

= usolid. (3.3) 

Boundary conditions at outflow planes are most often chosen to be Neumann, or 
natural boundary conditions on the stress, such as the no-traction condition 

n * T =  0. (3.4) 

This condition proved adequate for the flows analysed in this work, although a Robin 
boundary condition that relates the momentum flux to the velocity might have been 
used to shorten the two-dimensional computational domain (see Bixler 1982). Inflow 
boundary conditions on the flows of interest here usually arise from a matching of 
a one-dimensional lubrication-flow model to the two-dimensional flow. The form of 
this matching is specific to the particular problem a t  hand; so these boundary 
conditions are discussed at length where they are used in §§4-6. 

At the free surface between the liquid and a gas (considered here as inviscid and 
inertialess), the normal stress in the liquid must balance the capillary pressure : 

n-T=- - -nPa.  1 dt 
Ca ds (3.5) 

Here Ca = y V/cr is the capillary number which characterizes the ratio of viscous to 
surface tension forces, cr being the surface tension; Pa is the ambient gas pressure; 
t is the unit tangent vector in the direction of increasing arc length s along the free 
surface; and n is the outward-pointing unit normal vector. Equation (3.5) relates the 
normal stress in the fluid to surface tension and curvature of the meniscus, and also 
requires the shear stress to vanish. 

At a contact line (which will appear when one of the rolls is stationary) either the 
location or contact angle must be specified. The downstream end of the free surface 
is usually taken at an outflow plane, where the appropriate boundary condition 
for the free surface is that i t  is parallel to the solid substrate. 

Jn addition to the stress boundary condition a t  the free surface (3.5), the kinematic 
boundary condition is also imposed : 

n-u = 0. (3.6) 

This requires that there be no mass flow through the interface, i.e. the free surface 
is a streamline. 

3.2. Finite-element formulation 
The Navier-Stokes system, (3.1) and (3.2) along with associated boundary conditions, 
is solved by the method of subdomains, finite-element basis functions, and Galerkin's 
method of weighted residuals. A detailed description of the methodology is given by 
Kistler & Scriven (1983, 1984) and Kistler (1983). The system is nonlinear owing to 
the presence of free surfaces, the locations of which are unknown apriori and at  which 
nonlinear boundary conditions (3.5) and (3.6) apply. Additional nonlinearity is 
introduced by the convective momentum transport term in (3.1), but this is seldom 
significant in roll coating flows, which tend to have small Reynolds numbers. 
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The first step is to expand the unknown velocity and pressure each in a suitable 
set of basis functions and subdivide the domain into elements. In the formulation 
used here, quadrilateral elements are employed, with nine-node biquadratic basis 
functions (#$) for the velocity field and four-node bilinear ones (@i) for the pressure 
field. 

The basis-function expansion of the solution is inserted into the governing 
equations, and the latter are weighted with the basis functions, integrated over the 
domain, and set to zero. This reduces the original set of partial differential equations 
(the Navier-Stokes system) to a discrete analogue which takes the form of a large 
set of nonlinear algebraic equations (vanishing of weighted residuals). 

The momentum weighted residual (#i is the weighting function) provides as many 
equations as there are velocity unknowns, and the continuity equation (weighted by 
the pressure basis function ~ * )  provides as many equations as there are pressure 
unknowns, The kinematic equation is weighted by #{ along the free surface to provide 
as many equations as there are free-surface parameters. 

The coordinates of the nodes under the free surface are functions of the free surface 
parameters [hJ. When these nodes are located along spines (see Kistler k Scriven 
1983), the nodal coordinates xk of node k ( i , j )  along the ith spine can be written as 

(3.7) 

where xf, are the coordinates of the base of the spine (usually located on the solid 
substrate), e* is a unit vector in the direction along the spine toward the free surface, 
h, is the distance along e* from the base point to the free surface, and wj are the 
prescribed proportions according to which the nodes are spaced between the base 
point and free surface. In addition, the base points xf, and the base curve vectors 
er may be functions of other parameters, such as the matching plane X M  used in the 
forward-roll-coating analysis in 884 and 5.  

The key to handling the free surface is the use of isoparametric mapping, an 
element-by-element transformation between the actual flow domain and replicates 
of the unit square. Combined with the above node-distribution algorithm, this map 
allows convenient evaluation of the free-surface location, its unit tangent and normal 
vectors, and the derivative of any weighted residual equation with respect to the 
free-surface position. 

After the set of algebraic equations is completed with the appropriate boundary 
conditions, the velocity and pressure fields and the free-surface location can be solved 
for simultaneously. Essential boundary conditions on the velocities are imposed by 
replacing the corresponding momentum weighted residual equation at the boundary 
nodes with the desired velocity specification. Natural boundary conditions are 
imposed through the boundary integral of n.TqV obtained by integration of the 
V.T@ term of the momentum equation. For example, no traction at an outflow or 
symmetry plane is imposed by simply deleting the boundary integral. The stress 
boundary condition a t  the free surface is imposed by inserting (3.5) into the boundary 
integral, integrating by parts, and imposing natural boundary conditions on the 
slope of the interface at its end points. 

xk = xf + w%, et, 

3.3. Evaluation of the basis function coeficients 
As remarked above, the presence of a free surface makes the system of equations 
governing the flow nonlinear. In most previous attempts to solve such free-surface 
flows, such as the early work of Nickell, Tanner & Caswell (1974), the free-boundary 
location has been found by successive approximation techniques. For a given 
free-surface position, the corresponding flow field is computed with one of the 
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free-surface boundary conditions omitted, usually the normal-stress condition (the 
normal component of (3.5)) or the kinematic equation (3.6). That boundary condition, 
along with the current estimate of the flow field, is used to construct an updated 
free-surface location, and the cycle is repeated until convergence is obtained. This 
scheme may or may not converge depending on the choice of the boundary condition 
used in the iteration and the value of the capillary number (see Silliman 1979; 
Silliman & Scriven 1980), and even when it is successful the convergence is often slow. 

In contrast, Newton’s method converges quadratically over the entire parameter 
range, and has the added bonus that the Jacobian matrix contains information about 
the stability of the flow, a point which is exploited elsewhere (see Coyle 1984; Coyle 
et al. 1 9 8 6 ~ ) .  Newton iteration was first shown to be superior in solving confined flows 
by Gartling, Nickel1 & Tanner (1977). It has only recently been introduced into 
finite-element analysis of viscous free-surface flows (Ruschak 1980 ; Saito & Scriven 
1981). The biggest difficulty in applying Newton’s method is the evaluation of the 
derivatives of the weighted residuals with respect to the free-surface parameters. But 
by means of the isoparametric map described in the previous section, the residuals 
can be written as integrals over the unit ( 6 , ~ )  square for each element. Correct 
differentiation becomes straightforward as described by Kistler & Scriven (1983). 
Once the Jacobian matrix (the derivatives of the weighted residuals with respect to 
the finite-element coefficients) is constructed, Newton iteration proceeds to calculate 
updated coefficients by solving the linear system 

J A a  = -R(a,) ,  (3.8) 

where a is a vector of finite-element coefficients, and Aa = an+l - a,, the change in 
coefficients computed during the (n+  1)th iteration. The iteration proceeds until 
IlAall < e. In practice four norms were required to be less than lo-*: the maximum 
and the root-mean-square of both the residuals and updates. 

In the algorithm used in this work, the full Newton system (3.8) is assembled and 
solved by the frontal technique developed by Hood (1976, 1977)) with the addition 
of the variable frontwidth modification suggested by Walters (1980). 

An initial estimate for Newton iteration is important because the method does not 
converge if the initial guess is not a close enough approximation to the solution. 
Zeroth-order continuation was used in this work; i.e. the solution for one set of 
parameter values is used as an initial estimate for Newton iteration at a not- 
too-different set of parameters. 

The methods of analysis just described were used to compute the steady flows in 
forward roll coating. In the next section, asymptotic approximations are examined ; 
in 85, full solutions to the Navier-Stokes equations are given. 

4. Analysis by the method of matched asymptotic expansions 
The biggest difficulty in applying lubrication models to free-surface flows such as 

those analysed here is supplying appropriate boundary conditions at the liquidlair 
interface where the liquid splits into two films, one on each roll. As argued by Taylor 
(1963), the lubrication approximation is valid in the region between the two solid 
surfaces away from the meniscus, but a local two-dimensional analysis is necessary 
to describe the flow in the vicinity of the meniscus. Pitts & Greiller (1961) attempted 
such an analysis of symmetric film-splitting in forward roll coating, but oversimplified 
the situation near the meniscus. Coyne & Elrod (1970) analysed the free-surface flow 
between two parallel surfaces, one of which is stationary. Their solution depends on 
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FIGURE 5. Finite-element discretizations for forward roll coating flow in the asymptotic limit of 
(H,,/R)i+O, i.e. in the limit the roll surfaces become parallel planes ((a) symmetric, ( b )  asymmetric). 

a number of assumptions, among them that the profile of the velocity component 
locally parallel to the interface is parabolic in distance from the interface. Never- 
theless, it seems generally accepted that their solution provides the most accurate 
approximate boundary condition available before 1982 for this class of lubrication 
flows (Savage 1977). 

Ruschak (1982) recently showed how these flow problems can be handled with the 
method of matched asymptotic expansions (see Van Dyke 1975). The lubrication 
equations arise in the limit as (H,/R);+O when the variables are scaled appropriately 
for the gap centre as in 52. Equations (2.11) and (2.13) give the x-velocity and 
pressure, respectively, in the lubrication flow - the outer problem - generalized to 
the asymmetric case. The variables can also be rescaled for the flow region near the 
meniscus - the inner problem - the differences being in the 2-coordinate and the 
pressure : 

When the variables are scaled in this manner and the limit (H,/R):+O taken, 
the only simplification of the two-dimensional NavierStokes equations is that 
the domain becomes bounded by parallel plates separated by the distance 
H,(Xm) - H,(Xm) : see (2.3). In  order for the inner and outer flows to be matched, far 
upstream of the meniscus the inner flow must become rectilinear, i.e. 

v- 1 2 
v+1 v + 1  = 31--)(72-27)+-7+- @-+ - m), (4.2) 

where q is the unknown flow rate measured in units of the average roll speed times 
one-half the roll separation at the meniscus. 

This two-dimensional free-surface flow can be solved by the Galerkin/finite-element 
method described in $3. Typical discretizations into elements are shown in figure 5 
for both the symmetric case and the asymmetric case. The spines whose bases lie on 
the line X M  (the intersection of the matching plane with the (5, y)-plane) pass through 
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FIGURE 6. Flow rate (q)  predicted in the asymptotic limit as (H,,/R)!+O (open symbols, 
asymmetric calculation ; filled symbols, symmetric calculation). 

a polar origin outside the liquid. One of the spines is chosen to  locate this origin, and 
the distance h, along this spine to  the free surface is fixed, as is the distance to the 
polar origin. Thus the value of this hj is set as an  essential boundary condition. The 
problem still requires the kinematic equation to be satisfied (the essential boundary 
condition is imposed by deleting the j t h  kinematic equation) ; so the j t h  kinematic 
equation is moved to the row of the Jacobian matrix associated with the unknown 
flow rate q. In  this manner the flow rate is determined at the same time as the flow 
field. I n  the symmetric case the place where the free surface intersects the symmetry 
plane is specified to be a stagnation line (u = v = 0) and thus the flow field already 
satisfies the kinematic boundary condition there. But unlike the asymmetric case, 
a 90" contact angle is required by symmetry and it is this equation which is inserted 
in the row of the Jacobian associated with q. This equation may be either an essential 
boundary condition, i.e. the isoparametric map is used to  impose directly the slope 
condition q(( = 0 , ~  = 1 )  = 0, or a natural boundary condition, i.e. the x-momentum 
equation is used to impose the slope in the boundary term which arises from 
integration by parts of the free-surface boundary integral of the Galerkin weighted 
residual (i*fanr = 0). The calculated steady flow proves to be insensitive to this choice 
(to within 3 decimal places). 

The distance from the line XM upstream to where the inlet boundary condition 
(4.2) is imposed is also fixed. This distance must be great enough that the flow field 
is insensitive to  its value (see Ruschak 1982). 

Figure 6 shows the flow rate q as a function of capillary number and speed ratio. 
A much coarser discretization used to calculate the asymmetric film split gave the 
same q as the finer one used to  calculate symmetric split (see figure 5 ) .  These results 
for a speed ratio of unity are the same as those presented by Ruschak (1982) in his 
figure 3, which also agree well with the approximate solutions of Coyne & Elrod 
(1970). Changing the speed ratio from unity decreases q when Ca < 1 and increases 
q when Ca > 1; i t  should be noted that the speed in the capillary number is the 
average roll-surface speed. 

The second important variable predicted immediately from the flow calculations 
near the meniscus is the film thickness ratio t,/t,. Figure 7 shows that the split ratio 
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FIGURE 7. Film-thickness ratio predicted in the aaymptotic limit as (H,,/R)i+O. 
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FIGURE 8. Comparison of film-thickness ratios predicted in the asymptotic limit as (Ho/R)f+O, and 
by lubrication theory with the hypothesis that the film splits at the first stagnation line; both with 
Ca+co. 

a t  a given speed ratio becomes constant at capillary numbers greater than about 0.1. 
A t  lower capillary number the effect of disparity in roll radii or surface speeds is 
exaggerated by capillarity. When the logarithm of film-thickness ratio is plotted 
versus the logarithm of speed ratio, as in figure 8, the results are close to a line passing 
through the point ( 1 , l )  with a slope of 0.65. This is higher than the slope of 0.5 
predicted by the lubrication model of $2  (2.26), which indicates that the lubrication 
model is grossly inadequate for describing the asymmetric film splitting. 

To complete the solution of the outer problem (the lubrication-flow region) the first 
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FIGURE 9. Flow rate through the gap ( A )  and film-split location (tan&) predicted in the 
asymptotic limit as (H,/R)!+o. -0-, v = 1;  A, V = 2;  0, V = 5 ;  0 ,  V = 10. 

terms of the asymptotic expansions are matched to  give two boundary conditions 
(see Ruschak 1982): 

P(ern) = 0, (4.3) 

p,(e,) = 31/2[c0s~8,-~ Cos2eml. (4.4) 

The pressure and pressure gradient are given by (2.13) and (2.12) respectively; hence 
the matching conditions become 

-:A sine, ~os~r9 ,+(1-~A)($?+~s in28+~n)  = 0, (4-5) 

q- -A Cos2e, = 0. (4.6) 

This pair of equations determines the flow rate A through the gap and the film-split 
location 8, as functions of q, which is calculated by solving the inner problem (flow 
near the meniscus). Figure 9 shows that the flow rate A is relatively insensitive to 
both capillary number and speed ratio : a t  any speed ratio, A decreases less than 5 yo 
as capillary number is increased from 0.01 to infinity. The film-split location, also 
shown in figure 9, is a strong function of capillary number when Ca < 1. Lowering 
the capillary number causes the meniscus to  locate further and further from the gap. 
The presence of recirculation regions is indicated by a negative minimum x-velocity. 
Setting urn = 0, solving for 7 ,  and inserting the result into (4.2) reveals the condition 
for t h e  piesence of recirculation : 

(4.7) 
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FIGURE 10. Finite-element discretizations for flow in forward roll coating. (a) Symmetric, 
coarse; (a) symmetric, fine; (c) asymmetric. 

By means of figure 6, this roughly translates into the criterion that capillary number 
be less than unity. Thus as the capillary number falls below unity, recirculations form 
and the meniscus in turn rises out of the gap to accommodate them. This point is 
considered further in the next section. 

The predictions in this section stand in sharp contrast to those of the lubrication 
model of $2. The lubrication model predicts that as capillary number is decreased, 
the film-split location stays relatively constant and the flow rate increases dramatic- 
ally, while the results of the calculations using the asymptotic expansion predicts 
the opposite (i.e. flow rate remains constant and film-split location increases 
dramatically). The reason for this discrepancy will become clear in the following 
section, which shows the latter prediction to be the correct one. 

5. A general analysis of forward roll coating of a Newtonian liquid 
The analysis of forward roll coating by the method of matched asymptotic 

expansions presented in the previous section applies in the limit as (Ho/R)i+O. The 
question that remains is how accurate the predictions are when roll curvature is 
appreciable, i.e. when (Ho/R)i differs from zero. 

The entire flow from the nip to  downstream of film splitting was calculated by 
solving the NavierStokes system by the Galerkin/finite-element method outlined 
above (see also Coyle, Macosko & Scriven 1982). Discretizations for both the 
symmetric and asymmetric cases are shown in figure 10. The elements are distributed 
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as in $4, except that the line XM (the base curve for the first few spines used to 
parametrize the free surface) cannot be specified since the location of the film split 
is not known a priori. XM becomes another variable in the equation set and either 
the slope boundary condition (symmetric case) or a kinematic equation (asymmetric 
case) is inserted into the row of the Jacobian matrix associated with the unknown 
XM, as was done with the variable q in $4, 

Boundary conditions are needed at the nip, which constitutes the upstream end 
of the finite-element domain. Upstream of the nip the flow is known to be well 
approximated by the equations of the lubrication approximation ; accordingly the 
2-velocity and the pressure are taken from (2.11) and (2.13) respectively. Matching 
the two flows at  8 = 0 (the nip) gives the boundary conditions 

v- 1 2 
u = $(l-h)(72-27)+-7+- 

v+1 V + 1 ’  

v = 0, 

p = +1/2x ( 1  - :A).  

The velocity profile is specified by replacing the Galerkin weighted residuals of the 
x- and y-momentum equations at the inlet with (5.1) and (5.2). The flow rate h is 
an additional unknown and so (5.3) is inserted into the corresponding row of the 
Jacobian and this closes the equation set. The pressure used in (5.3) is the average 
pressure at the inlet plane evaluated with the finite-element basis functions. 

Williamson (1972) analysed a related case of creeping flow in similar fashion by 
using a finite-difference scheme and a sixth-degree polynomial approximation to the 
free surface. Indeed, Williamson was the first to calculate flow patterns typical of 
symmetric forward roll coating. He first guessed a value of A, used a Picard-type 
iteration (successive approximation) to determine the free surface and flow field, then 
checked to see if the pressure at the nip was zero. If it was not, he varied the value 
of A and repeated the process. This is a highly inefficient scheme because the Picard 
iteration for the flow field and free surface converges slowly, if a t  all (see Silliman 
1979), and the entire process needs to be repeated at  every value of A. In addition 
the pressure boundary condition is incorrect, because the pressure at the nip is zero 
only for totally submerged rolls, in which case A = j (see (5.3)). In the present work, 
Newton iteration was used to solve simultaneously for the flow field, free surface, and 
flow rate; usually only three or four iterations were needed. In addition, the Jacobian 
matrix was used to calculate the stability of the flow (see Coyle 1984; Coyle et al. 
1986~) .  

To test the sensitivity of the calculated flows to the discretization used, the 
solution obtained with the coarse mesh of 711 unknowns (figure 10a) was compared 
to that obtained with a fine mesh of 1775 unknowns (figure lob). The most sensitive 
variable, the film-split location, changed by less than 0.1 yo, indicating that the coarse 
mesh gives sufficiently accurate solutions. 

Figure 11 shows how the flow field varies with capillary number in the symmetric 
case. As the capillary number is reduced from 0.5 to 0.3, a pair of eddies forms below 
the meniscus and moves away from the gap, and the curvature of the meniscus is 
sharply reduced. It is useful to recognize how to avoid such eddies in which liquid 
would be trapped forever if the flow were truly steady and two-dimensional, because 
in reality, which always has some degree of three-dimensionality and unsteadiness, 
eddies tend to discharge their contents from time to time thus creating certain defects 
in the coated film. 
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FIQURE 11. Calculated flow fields in symmetric film splitting. Re = 0, St = 0, RJH, = 100; 
(a) Ca = 0.1; (a) Ca = 0.2; ( e )  Ca = 0.3; (d) Ca = 0.5. 

. '//P- 
FIQURE 12. Calculated streamlines for symmetric ( (a)  V = I)  and &symmetric ( ( b )  I' = 2) flow in 

forward roll coating. Ca = 0.1, Re = 0, St = 0, R/Ho = 200; 0 ,  stagnation line. 

Figure 12 shows how changing the speed ratio breaks the symmetry of the flow. 
There are still two closed zones of recirculation, but only the one nearer the faster 
roll is attached to the free surface. The second moves toward the gap slightly, 
allowing a small amount of liquid to come between it and the slower roll, circulate 
around its perimeter (between it and the free surface, then between it and the other 
eddy), and finally form the free surface of the film on the faster roll. 
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FIQURE 13. Comparison between flow rates ( A )  and film-split location (tan&,) for V = 1 aa 
predicted by asymptotic analysis and by Navier-Stokes solution. -0-, asymptotic (H,/R)f+O; 
A, Navier-Stokes H , / R  = 0.001 ; 0, Navier-Stokes H,/R = 0.01. 

Figure 13 shows how the flow rate and film-split location converge toward the 
asymptotic results as Ho/R is decreased. The agreement is good at  H,/R = 0.001 for 
Ca > 0.1, while at Ho/R = 0.01 the agreement is not good until Ca > 1. But even 
Ho/R = 0.001 is a large gap from a practical viewpoint; a typical operating condition 
might be a 0.001 in. gap with 10 in. diameter rolls, or H,/R = 0.0001. Thus the 
asymptotic results should be accurate for most applications. 

Another important point illustrated in figure 13 is that the location of the first 
stagnation line downstream of the gap, i.e. the base of the recirculation, is approxi- 
mately constant with capillary number. As the eddies grow, the meniscus moves 
further out of the gap to accommodate them. It is this first stagnation line 
downstream of the gap that is predicted by the lubrication model. In the model this 
stagnation line is at the free surface, since the model cannot account for the presence 
of eddies. Boundary condition (2.17) specifies the pressure a t  this point to be that 
resulting from the pressure jump across a curved interface, which is completely 
inappropriate. Thus the lubrication model of $2 incorrectly incorporates surface 
tension and leads to erroneous predictions of flow rate at  low capillary number. 
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Speed 
ratio : 

1 
2 
5 

10 

v,/ v, 

00 

Flow rate h 

Lubrication Asymptotic 
theory analysis 

1.302 1.290 
1.299 1.285 
1.290 1.271 
1.282 - 
1.255 - 

t H,JR = 0.001. 

Film-split location tan 0, 

Lubrication Asymptotic 
GFEMt theory analysis GFEMt 

1.293 1.704 1.446 1.458 
1.292 1.639 I .360 1.381 
1.280 1.444 1.145 1.154 

0.982 1.270 1.303 - 
1.233$ 0.939 - 0.7: 

$ Calculation described in $6. 

TABLE 1.  Flow rate and film-split location at infinite capillary number aa predicted by lubrication 
theory (stagnation-point boundary condition), asymptotic analysis, and by Galerkin/finite-element 
solution of the NavierStokes equation system over the relevant flow domain 
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FIQURE 14. Comparison between theoretical prediction and experimental measurements of film- 
split location. -, theory; 0, data of Pitts & Greiller (1961); ., data of this work; channel 
width = 1 + X2/(2RHo). 

Table 1 summarizes the predictions of A and tan8, at  infinite capillary number 
from lubrication theory, from asymptotic analysis, and from the complete Navier- 
Stokes solutions. Both quantities are overestimated by the lubrication model, 
although the flow rate not as much. 

The results show that the meniscus location is one of the features most sensitive 
to parameter values and assumptions used in modelling the flow. Thus the agreement 
shown in figure 14 between experiments and Naviedtokes theory, as calculated by 
the Galerkin/finite-element method, strongly confirms the latter. The flow rate A has 
been found by Schneider (1962), Greener t Middleman (1979), and Benkreira et al. 
(1981) always to be approximately 1.3, with which the theory is also in accord. 

Figure 15 displays another important prediction of the theory, the film-split ratio 
t , / t , ,  and compares it with experiments of Benkreira et al. (1981 b). The slope of the 
asymptotic predictions (0.65) matches that of the data, but the measured values of 
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FIQURE 15. Comparison between theoretical prediction and experimental meaaurement of the 
film-thickness ratio. 0, asymptotic analysis; A, Navier4tokes solutions; Ca = a, Re = 0,  St = 0, 
R/Ho = 200; ---, data of Benkreira et aZ. (1981). 
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Speed ratio, Vp/ V ,  

FIQURE 16. Calculations film-thickness ratio as a function of Stokes number. St = p g f f /  v, 
Cu = m, Re = 0, R/Ho = 200; 0,  St = 0 ;  A, St = 0.1 ; 0, St = 0.2; --- ; data of Benkreira 
et aZ. (1981). 

O 4 

t,/tl are lower than predicted. Savage (1982) also reported data, but they difYer from 
the others and scatter rather considerably (see his figure 4). 

Benkreira et al. suggested that it is the action of gravity which causes their data 
to show an asymmetric split even though their speeds and roll radii were symmetric : 
they used one roll above the other; thus gravity acted across the gap and film 1 would 
be expected to  be thicker. Finite-element calculations that account for gravity (figure 
16) show that their explanation is likely, but more experiments are needed to clarify 
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this point, particularly experiments with gravity acting in a neutral direction (rolls 
side-by-side) and with mean film thickness measured accurately. 

Perhaps the most significant aspect of these results is that they show exactly how 
and why the lubrication model breaks down. As already mentioned, the first 
stagnation line is not on the free surface but the onset of recirculating flow. Even 
if the pressure were constant across the recirculation to the free surface as postulated 
by Savage (1982), the lubrication model gives no clue as to where the free surface 
is located ; thus its curvature cannot be estimated and surface-tension effects cannot 
be properly accounted for. 

But an even more significant point is that the lubrication model never accurately 
predicts the asymmetric film split. The finite-element analysis proves that it is the 
local flow near the meniscus which determines the film split, not the upstream 
lubrication flow. The streamline passing through the first stagnation line downstream 
of the gap is not the one that divides the flow between the two rolls. 

6. The special case of a roll and a stationary flat plate 
This configuration has been investigated by Sullivan & Middleman (1979) and 

Baumann (1980). It is covered by the foregoing analyses when R, + co and V, = 0, so 
that the mean roll radius is 2R, and the speed ratio V is infinite. For V+co the 
lubrication model predicts in the limit of infinite capillary number 

A = 1.25, tan8, = 0.94. (6.1) 
The finite-element calculations corresponding to the asymptotic analysis of the 

flow near the meniscus were difficult at speed ratios exceeding 10 because of trouble 
in distributing appropriately the quadrilateral elements when the flow becomes 
highly asymmetric. It proved easier to carry out the full flow analysis described in 
$5 by starting from the symmetric case and merely changing the symmetry boundary 
condition to the no-slip condition on the same plane. In this limit of infinite speed 
ratio there is no splitting of the film between solid surfaces; rather the free-surface 
stagnation line which defines the split point becomes attached to the stationary solid 
surface. This introduces a new parameter: the static contact angle between the liquid 
and the stationary solid wall. 

Figure 17 reveals that the flow rate through the gap is insensitive to the static 
contact angle that was chosen (in the range 60" to 140°), and that in the limit of 
infinite capillary number the flow rate is 

A = 1.23. (6.2) 

The lubrication model (6.1) agrees fairly well with this value. The film-split location 
(tan8,) is defined as the contact-line position, and is very sensitive to the specified 
static contact angle, as shown in figure 17. But the free-surface profiles in figure 18 
make clear that the choice of contact angle affects only the flow near the contact line. 
These features agree with the results of the asymptotic analysis in 84. Moreover, 
according to the experiments of Sullivan & Middleman (1979) the flow rate falls in 
the range 

1.1 < A < 1.3, 

with which the theoretical predictions agree. 

(6.3) 
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FIGURE 17. Sensitivity of flow rate ( A )  and contact-line location (tan6,) to the specified static 
contact angle (0,) in the flow between a rotating roll and a stationary wall. Re = 0, St = 0, 
R / H ,  = 2000. 
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FIGURE 18. Sensitivity of free-surface profiles to specified static contact angle (6,) in the flow 

between a rotating roll and a stationary wall. RIH, = 2000, (a )  Ca = 0.1, ( b )  Ca = co. 

7. Concluding remarks 
A general theory of steady, two-dimensional, Newtonian film-splitting flows in 

forward roll coating has been presented. The results show lubrication theory to be 
inadequate in predicting flow rate and film-split location for capillary numbers less 
than unity due to ad hoc boundary conditions that need be applied at the free surface. 
It is a useful approximation at  high capillary numbers since overall flow rate is 
governed by lubrication flow when surface tension is negligible. One interesting 
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prediction of the lubrication model is that the ratio of film thicknesses produced on 
the rolls is equal to the 0.5 power of the speed ratio, and is independent of the roll 
radii and capillary number. The rigorous theory shows that the exponent should be 
approximately 0.65, and that for capillary numbers less than 0.1 the asymmetry of 
the film split is magnified. This speed-ratio dependence of the film-split ratio is 
confirmed by the data of Benkreira et al. (1981b), if the effect of gravity on their 
experiments is taken into account. 

Comparison of the predictions of the most rigorous theory with those arising from 
the asymptotic expansions show the latter become accurate as H,/R approaches 
0.001 and remains accurate at lower values. The full solutions of the Navier-Stokes 
equations also give the full details of the two-dimensional flow field with its complex 
recirculation patterns in the asymmetric flow, and show how, in the limit of infinite 
speed ratio, the filrn-split stagnation line on the free surface evolves into a static 
contact line. 

Both the asymptotic and full solutions to the-NavieAtokes equations governing 
film-splitting flows point out the inability of lubrication theory to accurately account 
for surface tension or to predict the asymmetric split. This proves that it is the local 
flow near the meniscus which governs the film split, not the upstream lubrication 
flow. Furthermore, this local two-dimensional flow will be even more important in 
determining the stability of film-splitting flows to ‘ribbing’. The full solutions set the 
stage for accurate three-dimensional stability analysis (Coyle 1984; Coyle et al. 
1986a). 

The authors wish to thank S. F. Kistler, H. Saito, N. E. Bixler, and K. J. Ruschak 
for many helpful discussions. This work was supported by 3M Company and the 
University of Minnesota Computer Center. 
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